Verwijderd schreef op 09 september 2002 @ 20:55:
Zou je het het eventueel rechte/kromme pad niet kunnen meten door middel van de zijdelingse versnelling op het object? Als het namelijk een rechte weg aflegt, zou de zijdelingse versnelling afwezig moeten blijven..
Natuurlijk kan dan voor een objectieve waarnemer het nog wel een gebogen traject hebben, maar dat is weer iets anders.
Het lijkt me dat dit als maat zou moeten dienen

voor zover ik weet niet. een object dat in orbit is rond een ander object is in feite in vrije val; vanuit het object gezien werkt er geen (meetbare) kracht op dat object. bvb in de spaceshuttle meet je nul G (=geen versnelling) als ie eenmaal in orbit is.
Volgens Newton is dat te verklaren doordat de zwaartekracht en de centrifugaalkracht elkaar opheffen.
Einstein verklaart dat dmv kromming vd ruimte door massa, en dat een object niet anders kan dan de kromming vd ruimte volgen.
Practisch gezien komen die twee op hetzelfde neer: de maan draait rond de aarde, en een foton wordt -zichtbaar- 'afgebogen' door de zon. (de waarneming van dat laatste is nu juist één vd bewijzen voor de theorie van Einstein).
Het rechte en het kromme pad zijn in dit geval tegengestelden:
of het pad recht dan wel gebogen is, is letterlijk "Relatief", dwz afhankelijk van het referentiekader dat je kiest.
Er bestaat volgens Einstein ook niet zoiets als een "objectieve waarnemer". Het ene referentiekader is even geldig als het ander (wel meer of minder handig, afhankelijk van het doel).
Bvb vanaf aarde kan je -zien- dat fotonen worden afgebogen door de zon, maw de fotonen volgen een gekromd pad. En dat is geen gezichtsbedro, het gaat m.i. dan ook te ver om te zeggen dat het "slechts lijkt alsof" het foton een gebogen pad volgt.
Maar vanuit het foton gezien is het pad recht.
Het is dus zaak om bij dit soort dingen altijd aan te geven wat je referentiekader is. Enige uitzondering is de lichtsnelheid; die is niet Relatief maar Absoluut.