To describe the routing inside an NMS cluster you need to break the matrix in two octals.
To describe an relative routing path inside a matrix you need 8 vectors.
To describe the absolute sides or axis of a matrix you need 8 vectors.
There was an bar number system of Bruce Martin, but zero is not the start on a single dimension but the product of boundaries.
A chain of tone letter of Yuen Ren Chao can describe higher numbers in unicode;
˥ ˦ ˧ ˨ ˩
Hyperqube absolute 4D top(p) and bottom(n) root axis coordinate system;
0p = ˧ ˥ ˩ → ˧˥˩
1n = ˧ ˩ ˥ → ˧˩˥
2p = ˧ ˥ ˦ → ˧˥˦
3n = ˧ ˩ ˨ → ˧˩˨
4p = ˧ ˦ ˦ → ˧˦˦
5n = ˧ ˨ ˨ → ˧˨˨
6p = ˧ ˥ ˥ → ˧˥˥
7n = ˧ ˩ ˩ → ˧˩˩
Hyperqube relative 4D left/up/forward/red=(p) and right/down/reverse/blue=(n) axis coordinate vectors;
Xp = ˥ ˩ ˧ → ˥˩˧
Xn = ˩ ˥ ˧ → ˩˥˧
Yp = ˥ ˦ ˧ → ˥˦˧
Yn = ˩ ˨ ˧ → ˩˨˧
Zp = ˦ ˦ ˧ → ˦˦˧
Zn = ˨ ˨ ˧ → ˨˨˧
Tp = ˥ ˥ ˧ → ˥˥˧
Tn = ˩ ˩ ˧ → ˩˩˧
Now it is possible to descripe a relative and absolute paths like;
˧˥˩˥˩˧˥˩˧˥˩˧˥˦˧˥˦˧˥˦˧˨˨˧˨˨˧˨˨˧˨˨˧˨˨˧˨˨˧˨˨˧
Which can be shorted to an EW₂T5D⁴ encoded dīpāvalī vector path within an 4D qube like;
˧˥˩¹˥˩˧³˥˦˧³˨˨˧⁷
Absolute coordinate system
˧˥˩ ________ ˧˥˦
|\ :\
| \ : \
| \ : \
| ˧˥˥---------˧˦˦
| : : :
˧˩˥ ___ :____˧˩˨ :
\ : \ :
\ : \ :
\ : \ :
\˧˩˩_________˧˨˨
Relative coordinate system
˩˩˧ ˥˦˧ ˦˦˧
\ | /
\|/
˩˥˧-- O --˥˩˧
/|\
/ | \
˨˨˧ ˩˨˧ ˥˥˧
:o:
..... Welcome .....
...to the matrix...
:o:
EW₁T5D⁴ = Startrek HEX
˧˥˩˧˩˥˧˥˦˧˩˨˧˦˦˧˨˨˧˥˥˧˩˩˥˩˧˩˥˧˥˦˧˩˨˧˦˦˧˨˨˧˥˥˧˩˩˧
EW₂T5D⁴ = Dīpāvalī Routing
˧˥˩⁰˧˩˥¹˧˥˦²˧˩˨³˧˦˦⁴˧˨˨⁵˧˥˥⁶˧˩˩⁷˥˩˧⁸˩˥˧⁹˥˦˧ᵃ˩˨˧ᵇ˦˦˧ᶜ˨˨˧ᵈ˥˥˧ᵉ˩˩˧ᶠ
EW₃T5D⁴ = 3Dᵛᴼˣᴱˡ Numbers
˧˥˩⁰˧˩˥¹˧˥˦²˧˩˨³˧˦˦⁴˧˨˨⁵˧˥˥⁶˧˩˩⁷˥˩˧⁸˩˥˧⁹˥˦˧ᵃ˩˨˧ᵇ˦˦˧ᶜ˨˨˧ᵈ˥˥˧ᵉ˩˩˧ᶠ = red
˧˥˩₀˧˩˥₁˧˥˦₂˧˩˨₃˧˦˦₄˧˨˨₅˧˥˥₆˧˩˩₇˥˩˧₈˩˥˧₉˥˦˧ₐ˩˨˧₆˦˦˧꜀˨˨˧ₔ˥˥˧ₑ˩˩˧բ = blue
EW₆T10D⁴
Unicode fails on POC
Voorbeeld van relative routing over verschillende server hobs;
=== Δ∞ ==+== dīpāvalī =================+=== msg ======
<20:01:46> |˧˥˩¹˥˩˧³˥˦˧³˨˨˧⁷˧˥˥⁰ hello 💝 ˧˥˩⁷˩˨˧⁹ 💕
<21:02:47> |˧˩˨¹˧˥˥²˥˩˧¹˥˦˧¹˩˨˧¹˧˩˥⁰ silly
<22:03:48> |˥˩˧¹˨˨˧¹˧˩˨¹˧˨˨¹˧˥˥¹˧˩˩¹˩˥˧¹˩˨˧¹˦˦˧¹˨˨˧¹˩˩˧⁰ basic
<23:04:49> |˧˥˥¹˩˩˧¹˥˩˧²˧˩˩¹˥˩˧¹˧˥˩¹˧˩˥¹˧˥˩¹˧˩˨¹˧˦˦³˧˨˨¹˥˦˧¹˦˦˧¹˩˩˧¹˧˨˨¹˧˦˦¹˧˩˩⁰ ♒ UTF16BE 😎
<00:00:00> |˧˥˩⁰ OK
To describe an relative routing path inside a matrix you need 8 vectors.
To describe the absolute sides or axis of a matrix you need 8 vectors.
There was an bar number system of Bruce Martin, but zero is not the start on a single dimension but the product of boundaries.
A chain of tone letter of Yuen Ren Chao can describe higher numbers in unicode;
˥ ˦ ˧ ˨ ˩
Hyperqube absolute 4D top(p) and bottom(n) root axis coordinate system;
0p = ˧ ˥ ˩ → ˧˥˩
1n = ˧ ˩ ˥ → ˧˩˥
2p = ˧ ˥ ˦ → ˧˥˦
3n = ˧ ˩ ˨ → ˧˩˨
4p = ˧ ˦ ˦ → ˧˦˦
5n = ˧ ˨ ˨ → ˧˨˨
6p = ˧ ˥ ˥ → ˧˥˥
7n = ˧ ˩ ˩ → ˧˩˩
Hyperqube relative 4D left/up/forward/red=(p) and right/down/reverse/blue=(n) axis coordinate vectors;
Xp = ˥ ˩ ˧ → ˥˩˧
Xn = ˩ ˥ ˧ → ˩˥˧
Yp = ˥ ˦ ˧ → ˥˦˧
Yn = ˩ ˨ ˧ → ˩˨˧
Zp = ˦ ˦ ˧ → ˦˦˧
Zn = ˨ ˨ ˧ → ˨˨˧
Tp = ˥ ˥ ˧ → ˥˥˧
Tn = ˩ ˩ ˧ → ˩˩˧
Now it is possible to descripe a relative and absolute paths like;
˧˥˩˥˩˧˥˩˧˥˩˧˥˦˧˥˦˧˥˦˧˨˨˧˨˨˧˨˨˧˨˨˧˨˨˧˨˨˧˨˨˧
Which can be shorted to an EW₂T5D⁴ encoded dīpāvalī vector path within an 4D qube like;
˧˥˩¹˥˩˧³˥˦˧³˨˨˧⁷
Absolute coordinate system
˧˥˩ ________ ˧˥˦
|\ :\
| \ : \
| \ : \
| ˧˥˥---------˧˦˦
| : : :
˧˩˥ ___ :____˧˩˨ :
\ : \ :
\ : \ :
\ : \ :
\˧˩˩_________˧˨˨
Relative coordinate system
˩˩˧ ˥˦˧ ˦˦˧
\ | /
\|/
˩˥˧-- O --˥˩˧
/|\
/ | \
˨˨˧ ˩˨˧ ˥˥˧
:o:
..... Welcome .....
...to the matrix...
:o:
EW₁T5D⁴ = Startrek HEX
˧˥˩˧˩˥˧˥˦˧˩˨˧˦˦˧˨˨˧˥˥˧˩˩˥˩˧˩˥˧˥˦˧˩˨˧˦˦˧˨˨˧˥˥˧˩˩˧
EW₂T5D⁴ = Dīpāvalī Routing
˧˥˩⁰˧˩˥¹˧˥˦²˧˩˨³˧˦˦⁴˧˨˨⁵˧˥˥⁶˧˩˩⁷˥˩˧⁸˩˥˧⁹˥˦˧ᵃ˩˨˧ᵇ˦˦˧ᶜ˨˨˧ᵈ˥˥˧ᵉ˩˩˧ᶠ
EW₃T5D⁴ = 3Dᵛᴼˣᴱˡ Numbers
˧˥˩⁰˧˩˥¹˧˥˦²˧˩˨³˧˦˦⁴˧˨˨⁵˧˥˥⁶˧˩˩⁷˥˩˧⁸˩˥˧⁹˥˦˧ᵃ˩˨˧ᵇ˦˦˧ᶜ˨˨˧ᵈ˥˥˧ᵉ˩˩˧ᶠ = red
˧˥˩₀˧˩˥₁˧˥˦₂˧˩˨₃˧˦˦₄˧˨˨₅˧˥˥₆˧˩˩₇˥˩˧₈˩˥˧₉˥˦˧ₐ˩˨˧₆˦˦˧꜀˨˨˧ₔ˥˥˧ₑ˩˩˧բ = blue
EW₆T10D⁴
Unicode fails on POC
Voorbeeld van relative routing over verschillende server hobs;
=== Δ∞ ==+== dīpāvalī =================+=== msg ======
<20:01:46> |˧˥˩¹˥˩˧³˥˦˧³˨˨˧⁷˧˥˥⁰ hello 💝 ˧˥˩⁷˩˨˧⁹ 💕
<21:02:47> |˧˩˨¹˧˥˥²˥˩˧¹˥˦˧¹˩˨˧¹˧˩˥⁰ silly
<22:03:48> |˥˩˧¹˨˨˧¹˧˩˨¹˧˨˨¹˧˥˥¹˧˩˩¹˩˥˧¹˩˨˧¹˦˦˧¹˨˨˧¹˩˩˧⁰ basic
<23:04:49> |˧˥˥¹˩˩˧¹˥˩˧²˧˩˩¹˥˩˧¹˧˥˩¹˧˩˥¹˧˥˩¹˧˩˨¹˧˦˦³˧˨˨¹˥˦˧¹˦˦˧¹˩˩˧¹˧˨˨¹˧˦˦¹˧˩˩⁰ ♒ UTF16BE 😎
<00:00:00> |˧˥˩⁰ OK
There is a lurking fear in many people's eyes when they meet someone who is comfortable with the arcane commands it takes to truly communicate with a computer.