Ik ben bezig met het verwerken van de testdata voor m'n review van de Eizo ColorEdge CG277. Eén van de tests die ik heb gedaan is de uniformiteit te meten door een wit vlak in een 19x11 raster te meten met de X-Rite i1Pro.
Nou heb ik al een aantal analyses van die data gemaakt met Matlab in de vorm van intensiteitsplots (contourf plot):
Om dat te doen heb ik het volgende gedaan:
Het scherm is een 27" scherm met een actief gedeelte van 596,7 x 335,7 mm. Dat onderverdeeld in 19x11 vlakjes levert vlakjes op van 31,4 x 30,5 mm. Ik heb elk vlakje (ongeveer) in het midden gemeten. De i1Pro heeft een sensor opening met een diameter van 4,5 mm. Nu heeft elk vlakje de kleur van het meetpunt, terwijl de oppervlakte van een vlakje 60 keer zo groot is als dat van het meetpunt. Dat klopt natuurlijk niet helemaal. Dus wat ik graag zou willen is dat Matlab de kleuren uit de matrix gebruikt voor het midden van elk vlakje, maar alle tussenliggende kleuren interpoleert.
Kan dat en zo ja, hoe doe ik dat?
Geïnstalleerde toolboxes:
Nou heb ik al een aantal analyses van die data gemaakt met Matlab in de vorm van intensiteitsplots (contourf plot):
- ∆CCT
- ∆% helderheid
- contrastverdeling
- dE L*a*b* kleurverschil
- dE94 kleurverschil
- dE00 kleurverschil
Om dat te doen heb ik het volgende gedaan:
- In Matlab matrix gemaakt van alle RGB-combinaties in de sRGB kleurruimte voor een kleurdiepte van 8 bpc en een gammawaarde van 2,2
- Bradford chromatic adaptation matrix gemaakt van het witpunt van het middelste meetpunt naar D65
- Chromatic adaptation toegepast op ruwe xyY meetdata (xyY > XYZ > chromatic adaptation > xyY_adapted)
- Beste RGB-match gezocht op basis van laagste dE00 kleurverschil voor het helderste meetpunt (uit xyY_adapted) op basis van chromaticiteit
- xyY_adapted genormaliseerd naar die RGB-match (> xyY_adapted_norm)
- Beste RGB-matches gezocht voor alle meetpunten in xyY_adapted_norm op basis van laagste dE00 kleurverschil
Het scherm is een 27" scherm met een actief gedeelte van 596,7 x 335,7 mm. Dat onderverdeeld in 19x11 vlakjes levert vlakjes op van 31,4 x 30,5 mm. Ik heb elk vlakje (ongeveer) in het midden gemeten. De i1Pro heeft een sensor opening met een diameter van 4,5 mm. Nu heeft elk vlakje de kleur van het meetpunt, terwijl de oppervlakte van een vlakje 60 keer zo groot is als dat van het meetpunt. Dat klopt natuurlijk niet helemaal. Dus wat ik graag zou willen is dat Matlab de kleuren uit de matrix gebruikt voor het midden van elk vlakje, maar alle tussenliggende kleuren interpoleert.
Kan dat en zo ja, hoe doe ik dat?
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
| RGB_comb = [0.913725490196078 0.929411764705882 0.937254901960784; 0.929411764705882 0.945098039215686 0.949019607843137; 0.952941176470588 0.960784313725490 0.964705882352941; 0.968627450980392 0.976470588235294 0.980392156862745; 0.972549019607843 0.984313725490196 0.992156862745098; 0.976470588235294 0.984313725490196 0.992156862745098; 0.972549019607843 0.984313725490196 0.988235294117647; 0.972549019607843 0.980392156862745 0.988235294117647; 0.980392156862745 0.984313725490196 0.992156862745098; 0.976470588235294 0.984313725490196 0.988235294117647; 0.980392156862745 0.980392156862745 0.992156862745098; 0.972549019607843 0.980392156862745 0.992156862745098; 0.980392156862745 0.984313725490196 0.996078431372549; 0.976470588235294 0.984313725490196 0.996078431372549; 0.980392156862745 0.980392156862745 0.996078431372549; 0.980392156862745 0.980392156862745 0.992156862745098; 0.980392156862745 0.976470588235294 0.992156862745098; 0.976470588235294 0.972549019607843 0.988235294117647; 0.964705882352941 0.960784313725490 0.980392156862745; 0.913725490196078 0.925490196078431 0.925490196078431; 0.937254901960784 0.945098039215686 0.945098039215686; 0.952941176470588 0.956862745098039 0.956862745098039; 0.964705882352941 0.972549019607843 0.972549019607843; 0.980392156862745 0.980392156862745 0.980392156862745; 0.980392156862745 0.984313725490196 0.984313725490196; 0.976470588235294 0.980392156862745 0.984313725490196; 0.976470588235294 0.976470588235294 0.976470588235294; 0.976470588235294 0.976470588235294 0.976470588235294; 0.976470588235294 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.984313725490196; 0.984313725490196 0.980392156862745 0.984313725490196; 0.980392156862745 0.980392156862745 0.984313725490196; 0.984313725490196 0.976470588235294 0.980392156862745; 0.984313725490196 0.980392156862745 0.984313725490196; 0.984313725490196 0.976470588235294 0.984313725490196; 0.988235294117647 0.976470588235294 0.980392156862745; 0.980392156862745 0.968627450980392 0.972549019607843; 0.972549019607843 0.960784313725490 0.968627450980392; 0.901960784313726 0.913725490196078 0.917647058823529; 0.925490196078431 0.929411764705882 0.929411764705882; 0.945098039215686 0.949019607843137 0.949019607843137; 0.960784313725490 0.968627450980392 0.968627450980392; 0.972549019607843 0.976470588235294 0.976470588235294; 0.976470588235294 0.976470588235294 0.976470588235294; 0.972549019607843 0.980392156862745 0.980392156862745; 0.968627450980392 0.972549019607843 0.972549019607843; 0.976470588235294 0.972549019607843 0.972549019607843; 0.976470588235294 0.976470588235294 0.976470588235294; 0.980392156862745 0.980392156862745 0.980392156862745; 0.980392156862745 0.976470588235294 0.980392156862745; 0.980392156862745 0.976470588235294 0.980392156862745; 0.984313725490196 0.976470588235294 0.980392156862745; 0.988235294117647 0.980392156862745 0.984313725490196; 0.980392156862745 0.976470588235294 0.984313725490196; 0.972549019607843 0.964705882352941 0.972549019607843; 0.952941176470588 0.949019607843137 0.964705882352941; 0.956862745098039 0.945098039215686 0.949019607843137; 0.917647058823529 0.925490196078431 0.925490196078431; 0.933333333333333 0.941176470588235 0.937254901960784; 0.945098039215686 0.956862745098039 0.952941176470588; 0.972549019607843 0.976470588235294 0.976470588235294; 0.968627450980392 0.976470588235294 0.976470588235294; 0.968627450980392 0.976470588235294 0.972549019607843; 0.968627450980392 0.976470588235294 0.976470588235294; 0.968627450980392 0.972549019607843 0.972549019607843; 0.976470588235294 0.976470588235294 0.976470588235294; 0.972549019607843 0.972549019607843 0.976470588235294; 0.976470588235294 0.976470588235294 0.980392156862745; 0.980392156862745 0.980392156862745 0.980392156862745; 0.980392156862745 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.980392156862745; 0.980392156862745 0.980392156862745 0.984313725490196; 0.984313725490196 0.976470588235294 0.984313725490196; 0.972549019607843 0.968627450980392 0.980392156862745; 0.956862745098039 0.952941176470588 0.964705882352941; 0.949019607843137 0.945098039215686 0.956862745098039; 0.925490196078431 0.933333333333333 0.933333333333333; 0.945098039215686 0.949019607843137 0.949019607843137; 0.960784313725490 0.964705882352941 0.968627450980392; 0.964705882352941 0.976470588235294 0.976470588235294; 0.968627450980392 0.972549019607843 0.972549019607843; 0.968627450980392 0.972549019607843 0.972549019607843; 0.976470588235294 0.972549019607843 0.972549019607843; 0.968627450980392 0.972549019607843 0.972549019607843; 0.968627450980392 0.972549019607843 0.972549019607843; 0.968627450980392 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.980392156862745; 0.976470588235294 0.972549019607843 0.976470588235294; 0.976470588235294 0.976470588235294 0.984313725490196; 0.984313725490196 0.980392156862745 0.988235294117647; 0.980392156862745 0.976470588235294 0.984313725490196; 0.972549019607843 0.968627450980392 0.976470588235294; 0.960784313725490 0.952941176470588 0.964705882352941; 0.925490196078431 0.937254901960784 0.941176470588235; 0.960784313725490 0.968627450980392 0.964705882352941; 0.968627450980392 0.976470588235294 0.972549019607843; 0.968627450980392 0.976470588235294 0.968627450980392; 0.972549019607843 0.976470588235294 0.972549019607843; 0.976470588235294 0.972549019607843 0.972549019607843; 0.972549019607843 0.972549019607843 0.968627450980392; 0.968627450980392 0.976470588235294 0.968627450980392; 0.972549019607843 0.972549019607843 0.972549019607843; 0.980392156862745 0.980392156862745 0.980392156862745; 0.980392156862745 0.980392156862745 0.984313725490196; 0.980392156862745 0.976470588235294 0.980392156862745; 0.980392156862745 0.976470588235294 0.984313725490196; 0.976470588235294 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.980392156862745; 0.980392156862745 0.976470588235294 0.984313725490196; 0.980392156862745 0.976470588235294 0.984313725490196; 0.980392156862745 0.972549019607843 0.980392156862745; 0.960784313725490 0.956862745098039 0.968627450980392; 0.941176470588235 0.952941176470588 0.952941176470588; 0.968627450980392 0.972549019607843 0.976470588235294; 0.968627450980392 0.980392156862745 0.976470588235294; 0.980392156862745 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.976470588235294; 0.972549019607843 0.976470588235294 0.972549019607843; 0.976470588235294 0.976470588235294 0.976470588235294; 0.976470588235294 0.980392156862745 0.976470588235294; 0.980392156862745 0.976470588235294 0.976470588235294; 0.980392156862745 0.976470588235294 0.980392156862745; 0.980392156862745 0.980392156862745 0.984313725490196; 0.984313725490196 0.980392156862745 0.980392156862745; 0.988235294117647 0.980392156862745 0.984313725490196; 0.984313725490196 0.980392156862745 0.988235294117647; 0.984313725490196 0.984313725490196 0.988235294117647; 0.984313725490196 0.980392156862745 0.988235294117647; 0.980392156862745 0.976470588235294 0.984313725490196; 0.992156862745098 0.976470588235294 0.976470588235294; 0.960784313725490 0.960784313725490 0.976470588235294; 0.941176470588235 0.952941176470588 0.952941176470588; 0.968627450980392 0.972549019607843 0.972549019607843; 0.968627450980392 0.976470588235294 0.968627450980392; 0.976470588235294 0.976470588235294 0.976470588235294; 0.980392156862745 0.976470588235294 0.972549019607843; 0.968627450980392 0.972549019607843 0.968627450980392; 0.976470588235294 0.972549019607843 0.972549019607843; 0.976470588235294 0.976470588235294 0.972549019607843; 0.980392156862745 0.976470588235294 0.972549019607843; 0.976470588235294 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.980392156862745; 0.980392156862745 0.980392156862745 0.980392156862745; 0.980392156862745 0.976470588235294 0.980392156862745; 0.980392156862745 0.976470588235294 0.980392156862745; 0.980392156862745 0.976470588235294 0.980392156862745; 0.976470588235294 0.976470588235294 0.984313725490196; 0.984313725490196 0.976470588235294 0.984313725490196; 0.980392156862745 0.972549019607843 0.984313725490196; 0.960784313725490 0.960784313725490 0.976470588235294; 0.929411764705882 0.941176470588235 0.949019607843137; 0.964705882352941 0.972549019607843 0.968627450980392; 0.972549019607843 0.976470588235294 0.972549019607843; 0.968627450980392 0.972549019607843 0.972549019607843; 0.980392156862745 0.976470588235294 0.968627450980392; 0.976470588235294 0.972549019607843 0.968627450980392; 0.976470588235294 0.976470588235294 0.972549019607843; 0.972549019607843 0.972549019607843 0.968627450980392; 0.976470588235294 0.972549019607843 0.968627450980392; 0.984313725490196 0.976470588235294 0.976470588235294; 0.980392156862745 0.976470588235294 0.972549019607843; 0.980392156862745 0.976470588235294 0.976470588235294; 0.988235294117647 0.976470588235294 0.976470588235294; 0.984313725490196 0.976470588235294 0.976470588235294; 0.980392156862745 0.976470588235294 0.980392156862745; 0.980392156862745 0.976470588235294 0.984313725490196; 0.984313725490196 0.976470588235294 0.984313725490196; 0.984313725490196 0.980392156862745 0.988235294117647; 0.960784313725490 0.956862745098039 0.960784313725490; 0.952941176470588 0.956862745098039 0.960784313725490; 0.972549019607843 0.980392156862745 0.980392156862745; 0.972549019607843 0.976470588235294 0.972549019607843; 0.976470588235294 0.976470588235294 0.972549019607843; 0.980392156862745 0.980392156862745 0.976470588235294; 0.980392156862745 0.976470588235294 0.976470588235294; 0.980392156862745 0.976470588235294 0.976470588235294; 0.980392156862745 0.976470588235294 0.972549019607843; 0.980392156862745 0.980392156862745 0.980392156862745; 0.988235294117647 0.984313725490196 0.984313725490196; 0.984313725490196 0.980392156862745 0.980392156862745; 0.976470588235294 0.972549019607843 0.976470588235294; 0.984313725490196 0.976470588235294 0.980392156862745; 0.976470588235294 0.972549019607843 0.976470588235294; 0.980392156862745 0.976470588235294 0.976470588235294; 0.984313725490196 0.976470588235294 0.984313725490196; 0.976470588235294 0.976470588235294 0.992156862745098; 0.988235294117647 0.984313725490196 1.000000000000000; 0.972549019607843 0.968627450980392 0.980392156862745; 0.952941176470588 0.960784313725490 0.968627450980392; 0.964705882352941 0.972549019607843 0.976470588235294; 0.968627450980392 0.972549019607843 0.976470588235294; 0.968627450980392 0.976470588235294 0.976470588235294; 0.976470588235294 0.976470588235294 0.980392156862745; 0.964705882352941 0.968627450980392 0.968627450980392; 0.960784313725490 0.960784313725490 0.964705882352941; 0.972549019607843 0.968627450980392 0.968627450980392; 0.972549019607843 0.976470588235294 0.980392156862745; 0.976470588235294 0.972549019607843 0.984313725490196; 0.976470588235294 0.972549019607843 0.976470588235294; 0.984313725490196 0.972549019607843 0.980392156862745; 0.976470588235294 0.972549019607843 0.980392156862745; 0.976470588235294 0.972549019607843 0.980392156862745; 0.968627450980392 0.972549019607843 0.980392156862745; 0.972549019607843 0.968627450980392 0.980392156862745; 0.980392156862745 0.972549019607843 0.984313725490196; 0.980392156862745 0.980392156862745 0.996078431372549; 0.964705882352941 0.968627450980392 0.988235294117647]; UniformityImage = zeros(11,19,3); iCol = 1; iRow = 1; i = 1; while i <= 209 UniformityImage(iRow,iCol,:) = RGB_comb(i,:); if iCol == 19 iCol = 1; iRow = iRow + 1; else iCol = iCol + 1; end i = i + 1; end image(UniformityImage) axis off |
Geïnstalleerde toolboxes:
code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| MATLAB Version 8.3 (R2014a) Simulink Version 8.3 (R2014a) Communications System Toolbox Version 5.6 (R2014a) Computer Vision System Toolbox Version 6.0 (R2014a) Control System Toolbox Version 9.7 (R2014a) Curve Fitting Toolbox Version 3.4.1 (R2014a) DSP System Toolbox Version 8.6 (R2014a) Data Acquisition Toolbox Version 3.5 (R2014a) Global Optimization Toolbox Version 3.2.5 (R2014a) Image Acquisition Toolbox Version 4.7 (R2014a) Image Processing Toolbox Version 9.0 (R2014a) Instrument Control Toolbox Version 3.5 (R2014a) MATLAB Report Generator Version 3.16 (R2014a) Mapping Toolbox Version 4.0.1 (R2014a) Neural Network Toolbox Version 8.2 (R2014a) Optimization Toolbox Version 7.0 (R2014a) Parallel Computing Toolbox Version 6.4 (R2014a) Partial Differential Equation Toolbox Version 1.4 (R2014a) Phased Array System Toolbox Version 2.2 (R2014a) Signal Processing Toolbox Version 6.21 (R2014a) SimDriveline Version 2.6 (R2014a) SimElectronics Version 2.5 (R2014a) SimEvents Version 4.3.2 (R2014a) SimMechanics Version 4.4 (R2014a) SimPowerSystems Version 6.1 (R2014a) Simscape Version 3.11 (R2014a) Simulink 3D Animation Version 7.1 (R2014a) Simulink Control Design Version 4.0 (R2014a) Simulink Design Optimization Version 2.5 (R2014a) Simulink Report Generator Version 3.16 (R2014a) Stateflow Version 8.3 (R2014a) Statistics Toolbox Version 9.0 (R2014a) Symbolic Math Toolbox Version 6.0 (R2014a) Wavelet Toolbox Version 4.13 (R2014a) |