Lithium-ion typically discharges to 3.0V/cell. The spinel and coke versions can be discharged to 2.5V/cell to gain a few extra percentage points. Since the equipment manufacturers do not specify the battery type, most equipment is designed for a 3-volt cut-off.
A discharge below 2.5V/cell may put the battery's protection circuit to sleep, preventing a recharge with a regular charger. These batteries can be restored with the Boost program available on the Cadex C7000 Series battery analyzers.
Some lithium-ion batteries feature an ultra-low voltage cut-off that permanently disconnects the pack if a cell dips below 1.5V. A very deep discharge may cause the formation of copper shunt, which can lead to a partial or total electrical short. The same occurs if the cell is driven into negative polarity and is kept in that state for a while.
Manufacturers rate the lithium-ion battery at an 80% depth of discharge. Repeated full (100%) discharges would lower the specified cycle count. It is therefore recommended to charge lithium-ion more often rather than letting it discharge down too low. Periodic full discharges are not needed because lithium-ion is not affected by memory.
Aantal procent van de accu wat je nog kunt gebruiken naderhand.Some lithium-ion batteries fail due to excessive low discharge. If discharged below 2.5 volts per cell, the internal safety circuit opens and the battery appears dead. A charge with the original charger is no longer possible. Some battery analyzers (Cadex) feature a boost function that reactivates the protection circuit of a failed battery and enables a recharge. However, if the cell voltage has fallen below 1.5V/cell and has remained in that state for a few months, a recharge should be avoided because of safety concerns. To prevent failure, never store the battery fully discharged. Apply some charge before storage, and then charge fully before use.
Simple Guidelines
Avoid frequent full discharges because this puts additional strain on the battery. Several partial discharges with frequent recharges are better for lithium-ion than one deep one. Recharging a partially charged lithium-ion does not cause harm because there is no memory. (In this respect, lithium-ion differs from nickel-based batteries.) Short battery life in a laptop is mainly cause by heat rather than charge / discharge patterns.
Batteries with fuel gauge (laptops) should be calibrated by applying a deliberate full discharge once every 30 charges. Running the pack down in the equipment does this. If ignored, the fuel gauge will become increasingly less accurate and in some cases cut off the device prematurely.
Keep the lithium-ion battery cool. Avoid a hot car. For prolonged storage, keep the battery at a 40% charge level.
Consider removing the battery from a laptop when running on fixed power. (Some laptop manufacturers are concerned about dust and moisture accumulating inside the battery casing.)
Avoid purchasing spare lithium-ion batteries for later use. Observe manufacturing dates. Do not buy old stock, even if sold at clearance prices.
If you have a spare lithium-ion battery, use one to the fullest and keep the other cool by placing it in the refrigerator. Do not freeze the battery. For best results, store the battery at 40% state-of-charge.
Een grote paste van
www.batteryuniversity.com 
. Li-ion batterijen houden er dus niet van om volledig leeg getrokken te worden (dit geldt elke keer als een cycle en hierdoor slijt je batterij erg snel). Als je ze opslaat, tot 40% leeg laten lopen. Hierdoor blijft de batterij in de beste conditie (zie het tabelletje). Opslaan op een koel plekje is ook van belang.
Als je hem dus echt helemaal leegtrekt en dan opslaat zou het kunnen dat het voltage in de cellen te laag wordt (zie de tekst). Dat zal ook de oorzaak zijn dat hij niet meer op wil laden.
Voor nog veel meer info over allerlei soorten accu's en hoe te behandelen:
www.batteryuniversity.com
I haven't lost my mind, it's backed up on tape somewhere...